University of Malta
Junior College

Subject: Advanced Pure Mathematics
Date: June 2009
Time: 09.00 - 12.00

End of Year Test

Worked Solutions
Question 1

Given that ABCD is a parallelogram with coordinates: A(1,2), B(7,-1) and C(-1,-2).

a) To find the equation of lines AD and CD.

Let AD have equation \(y = m_1 x + c_1 \) and let CD have equation \(y = m_2 x + c_2 \).

Since AD is parallel to CB then they have same gradient. Similarly CD has the same gradient as AB. Thus,

\[
m_1 = \text{Gradient of CB} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-1 + 2}{7 + 1} = \frac{1}{8}
\]

\[
m_2 = \text{Gradient of AB} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-1 - 2}{7 - 1} = -\frac{1}{2}
\]

Line AD has gradient \(m_1 = \frac{1}{8} \) and passes through point A(1,2). We can use this information to find the y-intercept \(c_1 \) as follows:

\[
y = m_1 x + c_1
\]

\[
y = \frac{1}{8} x + c_1
\]

At point A, we have that \(x = 1 \) and \(y = 2 \) hence,

\[
y = \frac{1}{8} x + c_1
\]

\[
2 = \frac{1}{8} + c_1
\]

\[
\frac{15}{8} = c_1
\]

Thus AD has equation \(y = \frac{1}{8} x + \frac{15}{8} \), which can also be written as \(8y = x + 15 \).
Line CD has gradient $m_2 = -\frac{1}{2}$ and passes through point $C(-1,-2)$. We can use this information to find the y-intercept c_2 as follows:

$$y = m_2 x + c_2$$

$$y = -\frac{1}{2} x + c_2$$

At point C, we have that $x = -1$ and $y = -2$ hence,

$$y = -\frac{1}{2} x + c_2$$

$$-2 = \frac{1}{2} + c_2$$

$$-\frac{5}{2} = c_2$$

Thus CD has equation $y = -\frac{1}{2} x - \frac{5}{2}$, which can also be written as $2y = -x - 5$.

b) To find the coordinates of point D. Point D is the point of intersection of lines AD and CD.

Line AD has equation $8y = x + 15$... eqn. 1

Line CD has equation $2y = -x - 5$... eqn. 2

We solve eqn. 1 and eqn. 2 simultaneously:

$$8y = x + 15$$

$$2y = -x - 5$$

We multiply eqn. 2 by 4

$$8y = x + 15$$

$$8y = -4x - 20$$

We subtract the two equations:

$$0 = 5x + 35$$

$$-35 = 5x$$

$$-7 = x$$

To find y, when $x = -7$:

$$2y = -x - 5$$

$$2y = 7 - 5$$

$$y = 1$$

Hence point D has coordinates $(-7,1)$.
c) To prove that \(\angle BAC \) is right-angled.

We consider the gradient of lines \(AB \) and \(AC \).

Gradient of line \(AB \) is \(m_2 = -\frac{1}{2} \).

Gradient of line \(AC \) is \(m_3 = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-2 - 2}{-1 - 1} = 2 \).

These two lines are perpendicular if and only if \(m_2 \cdot m_3 = -1 \).

Since \(-\frac{1}{2} \times 2 = -1\), then \(AB \) is perpendicular to \(AC \) and hence \(\angle BAC \) is right-angled.

d) Area of parallelogram = Length of Base \(\times \) Perpendicular height.

Perpendicular height = Length of \(AC = \sqrt{(-1 - 1)^2 + (-2 - 2)^2} = 2\sqrt{5} \).

Length of Base = Length of \(AB = \sqrt{(7 - 1)^2 + (-1 - 2)^2} = 3\sqrt{5} \).

Area of parallelogram = \(2\sqrt{5} \times 3\sqrt{5} = 6 \times 5 = 30 \) units\(^2\).

e) To find the shortest distance from \(A(1,2) \) to line \(BC \).

First we find equation of line \(BC \).

Gradient of line \(BC \) is \(\frac{1}{8} \). Thus line \(BC \) has equation \(y = \frac{1}{8}x + c \)

Line passes from point \((7,-1) \implies y = \frac{1}{8}x + c \)

\[
-1 = \frac{7}{8} + c \\
-1 - \frac{7}{8} = c \\
-\frac{15}{8} = c
\]

Hence \(BC \) has equation \(y = \frac{1}{8}x - \frac{15}{8} \), which can be written as \(-x + 8y + 15 = 0\).

Distance between \(A \) to line \(BC \) is \(\frac{|ah + bk + c|}{\sqrt{a^2 + b^2}} \). So,

\[
\left| \frac{-1(1) + 8(2) + 15}{\sqrt{(1+64)}} \right| = \frac{30}{\sqrt{65}} = 3.721
\]
Question 2

a) To resolve \(\frac{11x + 5}{(x - 2)(x + 1)^2} \) into partial fractions.

Let,

\[
\frac{11x + 5}{(x - 2)(x + 1)^2} \equiv \frac{A}{(x - 2)} + \frac{B}{(x + 1)} + \frac{C}{(x + 1)^2}.
\]

By L.C.M. we have that:

\[
11x + 5 \equiv A(x + 1)^2 + B(x - 2)(x + 1) + C(x - 2)
\]

Case 1 when \(x = 2 \):

\[
11(2) + 5 = A(2 + 1)^2 + B(2 - 2)(2 + 1) + C(2 - 2)
\]

\[
22 + 5 = 9A + 0 + 0
\]

\[
27 = 9A
\]

\[
3 = A
\]

Case 2 when \(x = -1 \):

\[
11(-1) + 5 = A(-1 + 1)^2 + B(-1 - 2)(-1 + 1) + C(-1 - 2)
\]

\[
-11 + 5 = 0 + 0 - 3C
\]

\[
-6 = -3C
\]

\[
2 = C
\]

Case 3 when \(x = 0 \):

\[
11(0) + 5 = A(0 + 1)^2 + B(0 - 2)(0 + 1) + C(0 - 2)
\]

\[
5 = A - 2B - 2C
\]

\[
5 = 3 - 2B - 4
\]

\[
5 = -1 - 2B
\]

\[
6 = -2B
\]

\[
-3 = B
\]

Answer:

\[
\frac{11x + 5}{(x - 2)(x + 1)^2} \equiv \frac{3}{(x - 2)} - \frac{3}{(x + 1)} + \frac{2}{(x + 1)^2}
\]
b) To show that \(\frac{6\left(2^{n+1}\right) - 4\left(2^{n-1}\right)}{2^{n+1} - 2^n} = 10 \)

Consider the left hand side:

\[
\frac{6\left(2^{n+1}\right) - 4\left(2^{n-1}\right)}{2^{n+1} - 2^n} = \frac{6\left(2^n \cdot 2\right) - 4\left(2^n \cdot 2^{-1}\right)}{2^n \cdot 2 - 2^n} = \frac{2^n (12 - 2)}{2^n} = 12 - 2 = 10
\]

Question 3

a) Given that \(f(x) \equiv x^3 + 5x^2 - 17x - 21 \)

(i) To find the remainder when \(f(x) \) is divided by \((x - 3) \).

\[
f(x) \equiv x^3 + 5x^2 - 17x - 21
goalspace
f(3) \equiv (3)^3 + 5(3)^2 - 17(3) - 21
\equiv 27 + 45 - 51 - 21
\equiv 0
\]

Hence the remainder is 0.

To find the other factors, we use long division in algebra:

\[
\begin{array}{c|ccc}
& x^2 & + 8x & + 7 \\
\hline
(x - 3) & x^3 & + 5x^2 & - 17x - 21 \\
& x^3 & - 3x^2 & \\
\hline
& 8x^2 & - 17x & - 21 \\
& 8x^2 & - 24x & \\
\hline
& 7x & - 21 & \\
& 7x & - 21 & \\
\hline
& / & / & \\
\end{array}
\]

Hence \(f(x) \equiv (x - 3)(x^2 + 8x + 7) \)

\[\equiv (x - 3)(x + 7)(x + 1)\]
b) To solve the following simultaneous equations:

\[3^{x-y} = 9^y \quad \text{... eqn. 1}\]
\[2^x = 6(2^y) \quad \text{... eqn. 2}\]

Consider eqn. 1:

\[3^{x-y} = 9^y\]
\[\log_3 3^{x-y} = \log_3 9^y\]
\[(x-y)\log_3 3 = \log_3 3^{3y}\]
\[(x-y)\log_3 3 = 2y\log_3 3\]
\[x-y = 2y\]
\[x = 3y\]

Consider eqn. 2

\[2^x = 6(2^y)\]
\[2^{3y} = 6(2^y)\]
\[\log_2 2^{3y} = \log_2 6(2^y)\]
\[3y\log_2 2 = \log_2 6 + y\log_2 2\]
\[3y\log_2 2 - y\log_2 2 = \log_2 6\]
\[2y\log_2 2 = \log_2 6\]
\[y = \frac{1}{2}\log_2 6\]

So, \(y = \frac{1}{2}\log_2 6\). Recall that \(x = 3y\) so, \(x = \frac{3}{2}\log_2 6\).

Answer: \(x = \frac{3}{2}\log_2 6\)
\(y = \frac{1}{2}\log_2 6\)
Question 4

a) Given that \(\alpha \) and \(\beta \) are the roots of the quadratic equation \(2x^2 + 3x + 4 = 0 \). So,

Sum of roots \(\Rightarrow \quad \alpha + \beta = \frac{-b}{a} = \frac{-3}{2} \)

Product of roots \(\Rightarrow \quad \alpha\beta = \frac{c}{a} = \frac{4}{2} = 2 \)

We are required to form a new quadratic equation whose roots are \(\frac{1}{\alpha^3} \) and \(\frac{1}{\beta^3} \).

Sum of roots \(\Rightarrow \quad \frac{1}{\alpha^3} + \frac{1}{\beta^3} = \frac{\alpha^3 + \beta^3}{(\alpha\beta)^3} \)

\[
= \frac{(\alpha + \beta)(\alpha^2 - \alpha\beta + \beta^2)}{(\alpha\beta)^3}
\]

\[
= \frac{(\alpha + \beta)((\alpha^2 + \beta^2) - \alpha\beta)}{(\alpha\beta)^3}
\]

\[
= \frac{(\alpha + \beta)((\alpha + \beta)^2 - 3\alpha\beta)}{(\alpha\beta)^3}
\]

\[
= \frac{(-\frac{3}{2})((-\frac{3}{2})^2 - 6)}{2^3}
\]

\[
= \frac{45}{64}
\]

Product of roots \(\Rightarrow \quad \frac{1}{\alpha^3} \cdot \frac{1}{\beta^3} = \frac{1}{(\alpha\beta)^3} \)

\[
= \frac{1}{2^3}
\]

\[
= \frac{1}{8}
\]

Thus new equation is \(x^2 - (\text{sum of roots})x + (\text{product of roots}) = 0 \)

\[
x^2 - \frac{45x}{64} + \frac{1}{8} = 0
\]

\[
64x^2 - 45x + 8 = 0
\]
b) To solve the following inequalities:

(i) Consider \(6x^2 - 7x > 3\)

\[
\begin{align*}
6x^2 - 7x &> 3 \\
6x^2 - 7x - 3 &> 0 \\
(3x + 1)(2x - 3) &> 0
\end{align*}
\]

Next we sketch the graph to identify the correct region as shown below:

From the graph it is evident that the inequality region is:

\[x < -\frac{1}{3} \text{ and } x > \frac{3}{2}\]

(ii) Consider \(\frac{x + 4}{2x - 3} < -1\)

\[
\begin{align*}
\frac{x + 4}{2x - 3} &< -1 \\
\frac{(x + 4)(2x - 3)}{(2x - 3)} &< -(2x - 3)^2 \\
(x + 4)(2x - 3) &< -(2x - 3)(2x - 3) \\
2x^2 - 3x + 8x - 12 &< -\left(4x^2 - 6x - 6x + 9\right) \\
2x^2 + 5x - 12 &< -4x^2 + 12x - 9 \\
6x^2 - 7x - 3 &< 0 \\
(3x + 1)(2x - 3) &< 0
\end{align*}
\]

From the graph it is evident that the inequality region is:

\[-\frac{1}{3} < x < \frac{3}{2}\]
Question 5

a) To eliminate θ from the following equations: $x = \cos 2\theta$ and $y = 2\cos \theta$.

Consider the first equation: $x = \cos 2\theta$

$$= 2\cos^2 \theta - 1.$$

But from the second equation we have that $\cos \theta = \frac{y}{2}$. If we substitute this into the equation above, we get:

$$x = 2\cos^2 \theta - 1$$

$$= 2\left(\frac{y}{2}\right)^2 - 1$$

$$x = \frac{y^2}{2} - 1$$

$$2(x + 1) = y^2$$

Answer: $2(x + 1) = y^2$.

b) To prove that $\sin 3x + 2\sin 5x \sin^2 x + \sin 7x = 2\sin 5x \cos^2 x$.

We start by considering the left hand side:

$$\sin 3x + 2\sin 5x \sin^2 x + \sin 7x = \sin 7x + \sin 3x + 2\sin 5x \sin^2 x$$

$$= 2\sin\left(\frac{7x + 3x}{2}\right)\cos\left(\frac{7x - 3x}{2}\right) + 2\sin 5x \sin^2 x$$

$$= 2\sin 5x \cos 2x + 2\sin 5x \sin^2 x$$

$$= 2\sin 5x \left(\cos 2x + \sin^2 x\right)$$

$$= 2\sin 5x \left(\cos^2 x - \sin^2 x + \sin^2 x\right)$$

$$= 2\sin 5x \cos^2 x$$
Question 6
Given that a circle has equation \(x^2 + y^2 - 5x - 5y + 10 = 0 \) and has centre \(C \).

a) To find the coordinates of the centre \(C \) and radius:

For a circle with equation \(x^2 + y^2 + 2gx + 2fy + c = 0 \), then the centre \(C \) is \((-g, -f)\) and the radius is \(\sqrt{g^2 + f^2 - c} \).

By comparison we have that:

\[
2g = -5 \quad \text{and} \quad 2f = -5
\]

\[
g = -\frac{5}{2} \quad \text{and} \quad f = -\frac{5}{2}
\]

Thus point \(C \) has coordinates \(\left(\frac{5}{2}, \frac{5}{2} \right) \).

The radius is \(r = \sqrt{g^2 + f^2 - c} \)

\[
= \sqrt{\frac{25}{4} + \frac{25}{4} - 10}
\]

\[
= \frac{\sqrt{10}}{2}
\]

b) Given that the line has equation \(y = mx \) and intersects with the circle.

(i) To prove that \((1 + m^2)x^2 - 5(1 + m)x + 10 = 0 \).

Proof:

The equation of the circle is \(x^2 + y^2 - 5x - 5y + 10 = 0 \).

The equation of the line is \(y = mx \).

If we substitute the equation of the line into the equation of the circle we get:

\[
x^2 + (mx)^2 - 5x - 5(mx) + 10 = 0
\]

\[
x^2 + (mx)^2 - 5x - 5(mx) + 10 = 0
\]

\[
(1 + m^2)x^2 - 5(1 + m)x + 10 = 0
\]

As required.
(ii) To find the values of \(m \) for which \((1 + m^2)x^2 - 5(1 + m)x + 10 = 0\) has equal roots.

The above equation has equal roots when \(b^2 - 4ac = 0 \).

\[
b^2 - 4ac = 0
\]
\[
(-5(1 + m))^2 - 40(1 + m^2) = 0
\]
\[
25(1 + 2m + m^2) - 40 - 40m^2 = 0
\]
\[
25 + 50m + 25m^2 - 40 - 40m^2 = 0
\]
\[
-15 + 50m - 15m^2 = 0
\]
\[
3m^2 - 10m + 3 = 0
\]
\[
(3m - 1)(m - 3) = 0
\]

Hence \(m = 3 \) or \(m = \frac{1}{3} \).

(iii) The line would be a tangent to the given circle.

Question 7

Given that the functions \(f \) and \(g \) are defined as follows:

\[
f : x \rightarrow x^2, \ x \in \mathbb{R}
\]
\[
g : x \rightarrow \frac{4}{x - 1}, \ x \in \mathbb{R}, \ x \neq 1
\]

a) (i) To find the inverse \(g^{-1}(x) \), and state its domain.

Let ,

\[
y = \frac{4}{x - 1}
\]
\[
x - 1 = \frac{4}{y}
\]
\[
x = \frac{4}{y} + 1
\]

Hence \(g^{-1}(x) = \frac{4}{x} + 1 \) for all \(x \in \mathbb{R}, x \neq 0 \).
(ii) To find the composition of functions $f \circ g(x)$.

$$f \circ g(x) = f(g(x)) = \left(\frac{4}{x-1} \right)^2 = \frac{16}{(x-1)^2}$$

b)

(i)

(ii)

(iii)
Question 8

a) To differentiate the following with respect to x:

(i) $y = x^2e^{3x}$

Here we use the **product rule**:

Let,

$u = x^2$ and $v = e^{3x}$

$u' = 2x$ and $v' = 3e^{3x}$

By the product rule we have that,

$$\frac{dy}{dx} = uv' + vu'$$

$$= 3x^2e^{3x} + 2xe^{3x}$$

$$= xe^{3x}(3x + 2)$$

Answer $\frac{dy}{dx} = xe^{3x}(3x + 2)$

(i) $y = \sin^2(2x)$

Here we will use the **chain rule**:

$$y = \sin^4(2x)$$

$$\frac{dy}{dx} = 4 \sin^3(2x) \cos(2x) \cdot 2$$

$$\frac{dy}{dx} = 8 \sin^3(2x) \cos(2x)$$

Answer $\frac{dy}{dx} = 8 \sin^3(2x) \cos(2x)$

b) Given that the curve $y = 2x^3 + ax^2 + bx + 4$ has a minimum point at $(1, -3)$.

First we find the values of a and b.

By differentiation we have that:

$$y = 2x^3 + ax^2 + bx + 4$$

$$\frac{dy}{dx} = 6x^2 + 2ax + b.$$

$$\frac{d^2y}{dx^2} = 12x + 2a$$

Since $(1, -3)$ is a point on the curve, then:

$$y = 2x^3 + ax^2 + bx + 4$$

$$-3 = 2 + a + b + 4$$

$$-9 = a + b \quad \text{... eqn. 1}$$
Given also that \((1,-3)\) is a minimum point,

\[
\frac{dy}{dx} = 6x^2 + 2ax + b
\]
\[
0 = 6 + 2a + b
\]
\[
-6 = 2a + b \quad \text{... eqn. 2}
\]

Next we solve eqn. 1 and eqn. 2 simultaneously:

\[
-9 = a + b
\]
\[
-6 = 2a + b
\]

By subtracting eqn. 2 from eqn.1 we have that:

\[
-3 = -a
\]
\[
a = 3
\]

We use eqn. 1 to find \(b\) when \(a = 3\).

\[
-9 = a + b
\]
\[
-9 = 3 + b
\]
\[
-12 = b
\]

Answer \(a = 3\) and \(b = -12\)

b) Before we sketch we need to find the other turning point:

\[
\frac{dy}{dx} = 6x^2 + 2ax + b
\]
\[
0 = 6x^2 + 6x - 12
\]
\[
0 = x^2 + x - 2
\]
\[
0 = (x-1)(x+2)
\]

Hence we have turning points when \(x = 1\) and \(x = -2\).

When \(x = -2\), \(y = 24\). Hence the other turning point is \((-2,24)\).

Next we determine the nature of the turning points:

At \((1,-3)\) \(\Rightarrow \) \[
\frac{d^2y}{dx^2} = 12(1) + 6 = 18 > 0 \]. Hence \((1,-3)\) is a minimum.

At \((-2,24)\) \(\Rightarrow \) \[
\frac{d^2y}{dx^2} = 12(-2) + 6 = -18 < 0 \]. Hence \((-2,24)\) is a maximum.

Now we can sketch the graph shown on the following page:
Question 9

To evaluate the following integral by substitution.

\[\int_{0}^{2} \frac{\sqrt{1 + e^{-\frac{x}{2}}}}{e^{\frac{x}{2}}} \, dx \]

Given that:

\[u = e^{-\frac{x}{2}} \]
\[\frac{du}{dx} = -\frac{1}{2} e^{-\frac{x}{2}} \]
\[-2e^{\frac{x}{2}} \, du = dx \]

when \(x = 0 \) \(\Rightarrow \) \(u = e^{0} = 1 \)

when \(x = 2 \) \(\Rightarrow \) \(u = e^{-1} \)

So,

\[\int_{0}^{2} \frac{\sqrt{1 + e^{-\frac{x}{2}}}}{e^{\frac{x}{2}}} \, dx = -2 \int_{1}^{e^{-1}} \frac{\sqrt{1 + u}}{e^{\frac{u}{2}}} e^{\frac{x}{2}} \, du \]

\[= -2 \int_{1}^{e^{-1}} \sqrt{1 + u} \, du \]

\[= -2 \left[\frac{2(1 + u)^{\frac{3}{2}}}{3} \right]_{1}^{e^{-1}} \]

\[= -2 \left(\left[\frac{2(1 + e^{-1})^{\frac{3}{2}}}{3} \right] - \left[\frac{2(1 + 1)^{\frac{3}{2}}}{3} \right] \right) \]

\[= 1.638 \]
Question 10

Let \(a \) be the first term and let \(r \) be the common ratio of a geometric progression.

First term \(\Rightarrow \) \(a \)
Second term \(\Rightarrow \) \(ar \)
Fourth term \(\Rightarrow \) \(ar^3 \)
Fifth term \(\Rightarrow \) \(ar^4 \)

Given that:

\[
a + ar = -4
a(1 + r) = -4 \quad \text{...eqn. 1}
\]

and

\[
ar^3 + ar^4 = 108
a(1 + r)r^3 = 108 \quad \text{...eqn. 2}
\]

a) To find the value of \(a \) and \(r \) we solve eqn. 1 and eqn. 2 simultaneously.

If we substitute eqn.1 into eqn.2 we get:

\[
-4r^3 = 108
r^3 = -27
r = -3
\]

By using eqn.1 we find the value of \(a \):

\[
a(1 + r) = -4
a(1 - 3) = -4
-2a = -4
a = 2
\]

Answer: \(a = 2 \) and \(r = -3 \).

b) To find the sum of terms from the fifth to the tenth term.

\[
\text{Required Sum} = \sum_{n=1}^{10} 2(-3)^{n-1} - \sum_{n=1}^{4} 2(-3)^{n-1}
\]

\[
= S_{10} - S_4
= \frac{2 \left(1 - (-3)^{10} \right)}{1 + 3} - \frac{2 \left(1 - (-3)^4 \right)}{1 + 3}
= -29484
\]

c) The series diverges because \(|r| = 3 > 1 \).