1. (a) Since AD is parallel to BC, then $\overrightarrow{AB} = 2\overrightarrow{DC}$

(b) $\overrightarrow{DC} = \overrightarrow{DO} + \overrightarrow{OC} = \overrightarrow{OC} - \overrightarrow{OD} = 5\text{i} + 8\text{j} - (\text{i} + 5\text{j}) = 4\text{i} + 3\text{j}$

(c) $\overrightarrow{AB} = 2\overrightarrow{DC} = 2(4\text{i} + 3\text{j}) = 8\text{i} + 6\text{j}$

(d) $\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} = \text{i} + \text{j} + (8\text{i} + 6\text{j}) = 9\text{i} + 7\text{j}$

Hence B is given by $B(9, 7)$.

2. (a) The weight and the tension are the forces acting on C.

Resolving vertically, since C is in equilibrium:

$$T \sin 30^\circ + T \sin 30^\circ = 10$$

$$2T \sin 30^\circ = 10$$

$$2T \cdot \frac{1}{2} = 10$$

$$T = 10 \text{ N}$$

(b) The forces acting on ring A are the weight, tension, friction and normal reaction.
(c) With reference to the above diagram, resolving vertically:

\[R = 10 + T \sin 30^\circ \]

\[R = 10 + 10 \cdot \frac{1}{2} \]

\[R = 15\text{N} \]

Resolving horizontally:

\[F = T \cos 30^\circ \]

\[F = 10 \cdot \frac{\sqrt{3}}{2} = 5\sqrt{3}\text{N} \]

3. (a) \(P\) and \(Q\) are the vertical and horizontal components of the reaction at the hinge.

(b) Taking moments about \(A\), since the system is in equilibrium:

\[(70)(25 \cos \theta) = (T)(14) \]

and since \(\cos \theta = \frac{48}{50} = \frac{24}{25}\) then \(T = 120\text{N}\)

(c) System is in equilibrium. Thus resolving vertically:

\[P = 70\text{N} \]

3
Resolving horizontally:

\[Q = T \]

\[Q = 120 \text{N} \]

(d) The Three-Force result states that if a rigid body is in equilibrium under the action of 3 forces then the lines of action of these forces must be either parallel or concur. There are only 3 forces acting on the rod, namely \(R \) (the resultant of \(P \) and \(Q \)), the weight and the tension. The lines of action of the weight and the tension intersect at the mid-point of \(BC \) (so the forces must concur). Hence the reaction \(R \) must also pass through the mid-point of \(BC \).

4. (a) With reference to the diagram above, \(\sin \alpha = \frac{5}{13} \) and \(\cos \alpha = \frac{12}{13} \).

Resolving horizontally:

\[25 = Y - 15 + 26 \cos \alpha \]

\[25 = Y - 15 + 26 \cdot \frac{12}{13} \]

\[25 = Y - 15 + 24 \]

\[Y = 16 \text{N} \]

Resolving vertically:

\[-19 = 15 - X - 26 \sin \alpha \]

\[-19 = 15 - X - 26 \cdot \frac{5}{13} \]

\[-19 = 15 - X - 10 \]

\[X = 24 \text{N} \]

(b) For the system of forces, taking moments about \(Q \) in a clockwise direction:
Moment about Q = \((Y \times 5) - (15 \times 12) + (26 \cos \alpha \times 5)\)

\[= 80 - 180 + 120 = 20 \text{Nm}\]

Thus the resultant force must also have a moment of 20Nm (clockwise) about Q.

The line of action of the resultant must cross QR as shown:

```
\[\begin{array}{c}
\text{Q} & \text{R} \\
\text{x} & 25 \text{N} \\
19 \text{N}
\end{array}\]
```

Moment of resultant force about Q = 20Nm

\[19x = 20\]

\[x = \frac{20}{19} \text{ m (to the right of Q)}\]

(c) (i) The resultant force remains the same in either case i.e. \((25i - 19j)\) N

(ii) Moment of system of forces about P = Moment of resultant about P + C

\[(15 \times 5) - (15 \times 12) = 0 + C\]

\[-105 \text{Nm} = C\]

So the Couple has a magnitude of 105Nm in a counterclockwise sense.

5. (a) \(\tan \alpha = \frac{3}{4}\). Thus, \(\sin \alpha = \frac{3}{5}\) and \(\cos \alpha = \frac{4}{5}\).

For object A, resolving parallel to the plane:

\[T = 50 \sin \alpha\]

\[T = 50 \times \frac{3}{5} = 30 \text{ N}\]

(b) For pan B, resolving vertically:

\[W = T \Rightarrow W = 30 \text{N}\]

This means that the mass of the pan is \(30/g = 3 \text{Kg}\) (\(g\) is the acceleration due to gravity)
(c) With reference to the above diagram, \(W \), the weight of pan and particle is now 50N since the total mass of the pan changed from 3Kg to (3+2)Kg i.e. 5Kg.

Applying Newton’s 2nd law of motion to \(A \):

\[
F = ma
\]

\[
T - 50\sin\alpha = 5f
\]

\[
T = (5f + 30) \text{N}
\]

(d) Applying Newton’s 2nd law of motion to \(B \):

\[
F = ma
\]

\[
50 - T = 5f
\]

\[
T = (50 - 5f) \text{N}
\]

Equating the tensions obtained in parts (c) and (d),

\[
5f + 30 = 50 - 5f
\]

\[
f = 2 \text{ms}^{-2}
\]

6.

![Diagram](image)

(a) \(T = \lambda \frac{x}{l} \)

For upper string \(AB \)

\[
x = 1.8 - 1 = 0.8 \text{m}
\]

\[
T_1 = \lambda \frac{0.8}{1} = \frac{4\lambda}{5} \text{N}
\]

For lower string \(BC \)
(b) Particle B is in equilibrium. Thus resolving vertically:

\[T_1 = T_2 + 3 \]

\[\frac{4\lambda}{5} = \frac{\lambda}{5} + 3 \]

\[\frac{3\lambda}{5} = 3 \Rightarrow \lambda = 5 \text{ N} \]

(c) Applying Newton’s 2nd law to the particle with mass of B as 0.3Kg (weight of 30N)

\[F = ma \]

\[T_1 - 3 = 0.3a \]

But \(T_1 = \frac{4\lambda}{5} = 4 \text{ N} \)

\[4 - 3 = 0.3a \Rightarrow a = 3.33 \text{ ms}^{-2} \]

7. (a)

(b) During the acceleration:

\[v = u + at \]

\[8 = 4 + a(2) \]

\[a = 2 \text{ ms}^{-2} \]

During deceleration:
\[v = u + at \]
\[0 = 8 + a(2) \]
\[a = \frac{-4 \text{ m/s}^2}{2} \]

(c) Distance travelled = area under graph

\[= A_1 + A_2 \]
\[= \frac{1}{2} (4 + 8)(2) + \frac{1}{2} (4 + 2)(8) \]
\[= 12 + 24 = 36 \text{ m} \]

(d) Distance travelled by B in 6 seconds is given by,

\[s = ut \text{ (uniform speed, no acceleration)} \]
\[s = 6 \times 6 = 36 \text{ m} \]

So after 6 seconds the 2 particles will have travelled the same distance from the same point O. Hence they will be alongside each other.

(e) Particle A:

Distance travelled during acceleration = \(A_1 = 12 \text{ m} \)

Distance travelled at uniform speed = \((8)(2) = 16 \text{ m}\)

Distance travelled during 1 second of deceleration:

\[s = ut + \frac{1}{2}at^2 \]
\[s = (8)(1) + \frac{1}{2}(-4)(1^2) \]
Thus the total distance travelled in 5s by particle A is $12+16+6 = 34$ m.

Particle B:
Distance travelled in the first 5 seconds = $(6)(5) = 30$ m.
Distance between A and $B = 34 - 30 = 4$ m.