University of Malta

Junior College

Subject: Intermediate Applied Mathematics
Date: June 2011
Time: 13.00 - 16.00

End of Year Test

Worked Solutions
Question 1

1. (a) By the Triangle Rule of Addition of Vectors: \(\mathbf{OB} = \mathbf{OA} + \mathbf{AB} = (a + 2x) \);
 \(\mathbf{OD} = \mathbf{OA} + \mathbf{AD} = (a + 2y) \);
 \(\mathbf{OC} = \mathbf{OA} + \mathbf{AB} + \mathbf{BC} = \mathbf{OA} + \mathbf{AB} + \mathbf{AD} = (a + 2x + 2y) \).

 (b) Taking \(d = \mathbf{OD}, \ g = \mathbf{OG} \) and so on,
 \(\mathbf{DG} = \mathbf{DO} + \mathbf{OG} = \mathbf{g} - \mathbf{d} = (a + x + y) - (a + 2y) = x - y \);
 \(\mathbf{GB} = \mathbf{GO} + \mathbf{OB} = \mathbf{b} - \mathbf{g} = (a + 2x) - (a + x + y) = x - y \).
 Hence \(\mathbf{DG} = \mathbf{GB} \) implying that \(DGB \) is one line and that \(G \) is the midpoint of diagonal \(BD \).
 Similarly, \(\mathbf{AG} = \mathbf{g} - \mathbf{a} = (a + x + y) - (a) = x + y \);
 \(\mathbf{GC} = \mathbf{c} - \mathbf{g} = (a + 2x + 2y) - (a + x + y) = x + y \).
 Hence \(\mathbf{AG} = \mathbf{GC} \) implying that \(G \) is the midpoint of diagonal \(AC \).
 Since \(G \) is on both diagonals of parallelogram \(ABCD \) it must be their point of intersection.

 (c) Taking \(\mathbf{OZ} = z \),
 \[\text{L.H.S.} = \{\mathbf{a} - \mathbf{z}\} + \{(a + 2x) - \mathbf{z}\} + \{(a + 2x + 2y) - \mathbf{z}\} + \{(a + 2y) - \mathbf{z}\} \]
 \[= 4a + 4x + 4y - 4z = 4\{(a + x + y) - \mathbf{z}\} = 4(\mathbf{g} - \mathbf{z}) = 4 \mathbf{ZG}. \]

 (d) \(\mathbf{PQ} = \mathbf{OQ} - \mathbf{OP} = (4i + 2j) - (i) = (3i + 2j) \);
 \(\mathbf{SR} = \mathbf{OR} - \mathbf{OS} = (3i + 4j) - (2j) = (3i + 2j). \)
 Hence \(\mathbf{PQ} = \mathbf{SR} \) implying that \(PQ \) and \(SR \) are equal and parallel so that \(PQRS \)
 is a parallelogram.
 Now \(\mathbf{PQ} = \mathbf{SR} = |3i + 2j| = (3^2 + 2^2)^{1/2} = 13^{1/2}. \)
 Also, \(\mathbf{RQ} = \mathbf{SP} = |\mathbf{OP} - \mathbf{OS}| = |i - 2j| = (5)^{1/2}. \)

 (e) From the result in (c) taking the origin at \(Z \) and the points \(A, B, C, D \) to be \(P, Q, R, S \),
 respectively we have \(\mathbf{OP} + \mathbf{OQ} + \mathbf{OR} + \mathbf{OS} = 4\mathbf{OG} \) so that the position
 vector of the point of intersection of the diagonals is \(\mathbf{g} = \mathbf{OG} = \frac{1}{4} (\mathbf{OP} + \mathbf{OQ} + \mathbf{OR} + \mathbf{OS}) = \frac{1}{4} \{(i) + (4i + 2j) + (3i + 4j) + (2j)\} = 2i + 2j. \)
Question 2

Referring to the diagrams on the left, since \(C \) is equidistant from \(A \) and \(B \),

\[
\tan \theta = \frac{25}{120} = \frac{5}{12}.
\]

So that \(\sin \theta = \frac{x}{5} \).

Then by Pythagoras’ Theorem, \(x = 13 \) and \(\sin \theta = \frac{5}{13}, \cos \theta = \frac{12}{13} \).

Equilibrium at \(A \) implies \(\text{resolving vertically}: \)

\[T \sin \theta = 10 \text{N} \quad \text{or} \quad T\left(\frac{5}{13}\right) = 10, \quad \text{giving} \quad T = 13 \text{N}. \]

Equilibrium at \(B \) implies \(\text{resolving horizontally}: \)

\[T \cos \theta = F \quad \text{or} \quad F = (26 \text{N})(\frac{12}{13}) = 24 \text{N}. \]

Resolving vertically:

\[T \sin \theta + N_B = 70 \text{N} \quad \text{or} \quad N_B = 70 - (26)(\frac{5}{13}) = 60 \text{N}. \]

Hooke’s Law \(\Rightarrow \) \(T = \lambda e / a \)

\[\Rightarrow \quad 26 = \lambda (AC + BC - 78) / 78 = \lambda (130 - 78) / 78 \]

\[\Rightarrow \quad \lambda = (26)(78) / (52) = 39 \text{N}. \]

Question 3

3. (a) Since the 3 forces are in equilibrium, by the Principle of Moments, their sum of the moments, about any point, must add up to zero.

Hence, on taking moments about \(O \), the point of intersection of the lines of action of forces \(P \) and \(Q \),

we have:

\[P (0) + Q (0) + R \text{ (perpendicular distance of } O \text{ from the line of action of } R) = 0. \]
Now since there are 3, not 2 forces, \(R \) cannot be the zero force. Hence the perpendicular distance of \(O \) from the line of action of \(R \) is zero. This implies that the line of action of \(R \) also passes through \(O \).

(b) Referring to the following diagrams, by Pythagoras’ Theorem,
\[
GE = (8^2 + 15^2)^{1/2} = 17\text{cm}.
\]
Similarly, we have \(FE = 25\text{cm} \).

If we consider the normal reaction, \(N_G \), and the frictional force, \(F_G \), of the peg at \(G \) on the lamina as a single resultant reaction \(R \), then the lamina may be perceived as being in equilibrium under the action of 3 non-parallel forces. These are: the tension in the string \(T \) acting on the lamina at \(E \), the weight of the lamina which also passes through \(E \) (since the lamina is uniform) and lastly the resultant reaction, \(R \), acting at \(G \). By the 3-Force Result, proved in (a), the line of action of \(R \) passes also through \(E \).

Hence \(R \) must be in the direction \(GE \) and makes angle \(\theta = \tan^{-1}(15/8) \) with the vertical.

This implies that in triangle \(FGE \), \(FG \) is vertical and hence parallel to the weight; \(EF \) is parallel to \(T \); and \(GE \) is parallel to \(R \).

Hence triangle \(FGE \) is a Triangle of Forces.

Since the forces are represented in magnitude and direction by a Triangle of Forces we have:
\[
\frac{FG}{W} = \frac{GE}{R} = \frac{EF}{T} \quad \text{or} \quad \frac{28\text{cm}}{56\text{N}} = \frac{17\text{cm}}{R} = \frac{25\text{cm}}{T} \quad \text{giving} \quad R = 34\text{N}, \quad T = 50\text{N}.
\]

The frictional force \(F \) is the horizontal component of \(R \) and has magnitude \(R \)
\[
\sin \theta = 34\text{N} \left(\frac{8}{17} \right) = 16\text{N}.
\]
Question 4

The forces keeping the system of rod plus particle in equilibrium are the normal reaction \(N_A \) and \(N_B \) at \(A \) and \(B \) respectively and the weights of the rod and small load. Their directions and lines of action are shown in the adjoining diagram.

Equilibrium of system

\[\Rightarrow \text{resolving in direction of } N_A : \]
\[N_A = (20 + 10) \text{ N} \cos \theta \]
\[= 30 \text{ N} (3/5) = 18 \text{ N}. \]

\[\text{resolving in direction of } N_B : \]
\[N_B = (20 + 10) \text{ N} \sin \theta \]
\[= 30 \text{ N} (4/5) = 24 \text{ N}. \]

\[\text{taking moments about } B : \]
\[10N(x) + 20(NAB^2) = N_A(AB \cos \theta) \]
\[10x + 20 (100) = 18 (200 [3/5]) \]
\[\text{or } x = 18 (12) 20 (10) = 16 \text{ cm}. \]

Question 5

The geometry of the equilateral triangle \(ABC \) gives

\[AO = (AB^2 - BO^2)^{1/2} = (16 - 4)^{1/2} = 2[3]^{1/2} \text{ m}. \]

Symmetry of triangle \(ABC \) implies that the perpendiculars from vertices \(B \) and \(C \) are also \(2[3]^{1/2} \text{ m}. \)

From triangle \(BOX \), where \(X \) is the foot of the perpendicular from \(O \),

\[d = BO \sin 60^0 = [3]^{1/2} \text{ m}. \]
For the resultant of any system of forces we have:

\[(\sum \mathbf{F})_{\text{system}} = (\sum \mathbf{F})_{\text{resultant}} \]

and for a general point \(Z \), \((\sum \text{moments about})_{\text{system}} = (\sum \text{moments about } Z)_{\text{resultant}} \)

(i) So when the system is in equilibrium,

\((\text{moments about } A) \): \(P \cdot (AO) = 0 \text{ Nm} \)

\(\text{(resolving along BC)} \): \(P - (10 + Q) \cos 60^0 = 0 \text{ N} \) or \(10 + Q = 0 \) giving \(Q = -10 \text{ N} \).

\(\text{(resolving along OA)} \): \(R + (\ Q - 10) \sin 60^0 = 0 \text{ N} \)

\(\text{giving } R = 10\sqrt{3} \text{ N} \).

(ii) When the resultant is a clockwise couple of moment \(20\sqrt{3} \text{ Nm} \),

\((\text{moments about } A) \): \(P \cdot (AO) = -20\sqrt{3} \) \text{ Nm} \) or \(P(2\sqrt{3}) = -20\sqrt{3} \)

\(\text{giving } P = -10 \text{ N} \).

\(\text{(resolving along BC)} \): \(P - (10 + Q) \cos 60^0 = 0 \text{ N} \) or \(-20 = 10 + Q \)

\(\text{giving } Q = -30 \text{ N} \).

\(\text{(resolving along OA)} \): \(R + (\ Q - 10) \sin 60^0 = 0 \text{ N} \)

\(\text{giving } R = 20\sqrt{3} \text{ N} \).

(iii) When the resultant is a force of \(10\sqrt{3} \text{ N} \) acting at \(C \) in the direction \(OA \).

\((\text{moments about } A) \): \(P \cdot (AO) = 10\sqrt{3} \cdot (OC) \) or \(P(2\sqrt{3}) = 10\sqrt{3} \) \text{ (2)}

\(\text{giving } P = 10 \text{ N} \).

\(\text{(resolving along BC)} \): \(P - (10 + Q) \cos 60^0 = 0 \text{ N} \) or \(20 = 10 + Q \)

\(\text{giving } Q = 10 \text{ N} \).

\(\text{(resolving along OA)} \): \(R + (\ Q - 10) \sin 60^0 = 10\sqrt{3} \text{ N} \)

\(\text{giving } R = 10\sqrt{3} \text{ N} \).
Question 6

The \(v - t \) graph below represents the motion of the train from rest at station \(A \) to rest at station \(B \).

Since \(\text{gradient} \equiv \text{acceleration} \) and \(\text{area} \equiv \text{distance} \),
we have total area under graph \(= v \{(360+180)/2\} = 5,400 \text{ m} \)
giving \(v = 20 \text{ m s}^{-1} \)

Also, gradient in first 2 minutes is
\[
\frac{v}{120} = \frac{1}{6} \text{ms}^{-2}, \quad \text{giving the acceleration in}
\]
the first 2 minutes as required.

The gradient in the last minute is \(-\frac{v}{60} \) giving
the retardation in the last minute as \(\frac{1}{3} \text{ms}^{-2} \).

In the other voyage of the train from station \(A \) to \(B \), the train leaves \(A \) with maximum speed, \(v = 20 \text{ ms}^{-1} \) and only decelerates, as before, as it comes to a stop at \(B \). Hence the last part of this other journey must be similar to the first and takes exactly 60 s, while the first part must be covered with constant velocity \(v \).

Let the first part take \(T \) seconds. Then the \(v - t \) graph of the motion is as shown in
the adjoining diagram. Hence total area under graph \(= v \{(T + [T + 60])/2\} = 5,400 \text{ giving}
20 \{T + 30\} = 5,400 \quad \text{or} \quad T = (270 - 30) = 240 \text{s} \quad \text{so}
that the total time of the other journey is \(T + 60 = 300 \text{s} \quad \text{or} \quad 5 \text{ minutes} \).
Question 7

The Force-Acceleration diagrams of particles \(A \) and \(B \), while both particles are still in motion are shown below on the left. The common tension in the string and acceleration are symbolised by \(T \) (in Newton) and \(a \) (in \(\text{m s}^{-2} \)) whereas \(N \) is the normal reaction of the plane on \(A \).

Applying \(F = ma \), while both \(A \) and \(B \) are in motion, we get:

on \(A \), along the plane : \(T - 10 \sin 30^\circ = (1) a \) or \(T - 5 = a \)

on \(B \), vertically : \(20 - T = (2) a \).

These equations give \((T - 5) + (20 - T) = (1 + 2) a \) or \(a = 5 \) (m \(\text{s}^{-2} \)).

Since the acceleration is constant we may use the Equation for Constant Acceleration \(v^2 = u^2 + 2as \) for the particles’ motion until \(B \) hits the ground.

This gives: \(v^2 = 0^2 + 2 \times 5 \times 0.4 = 4 \) or \(v = 2 \). Thus the common speed of the particles when \(B \) hits the ground is \(2 \text{ m s}^{-1} \).

When \(B \) hits the ground, the string becomes slack so that the only force acting on \(B \) besides the normal reaction is its weight of \(10 \) N as shown in the diagram above on the right. Since the acceleration, \(f \), is along the plane in the direction of the resultant force, it points downwards, that is, in the opposite direction of the velocity of \(B \). This makes us consider \(B \)’s motion as that of retardation.

Applying \(F = ma \) during the entire motion of \(A \) while \(B \) is at rest:

on \(A \), along the plane : \(20 \text{ N sin } 30^\circ = 2f \) giving \(f = 20/4 = 5 \text{ m s}^{-2} \).

Again, since the acceleration is constant, \(v^2 = u^2 + 2as \), applied from the moment \(B \) stops moving to the moment \(A \) comes to rest, gives: \(0^2 = 2^2 + 2(-5)s \) leading to \(s = 4/10 \) or \(0.4 \) m.

Since \(A \) had already moved an equal distance up the plane while \(B \) was in motion, that it has moved a total distance of \(0.8 \) m, it reaches the pulley \(P \) just as it comes to rest.